This is an ongoing riddle to see how far we can get as a group.

Similar to “Just One” we try and figure out how to use six 6’s to equal 1 (O.K. that’s been solved) then 2, then 3, then 4, etc. to see how far we can get.

We are to come up with answers in sequence (2, 3, 4, 5, etc.) and the same person is not allowed to produce two answers in a row. So if I come up with the solution for 2. I must wait until someone else posts a solution for six 6’s equaling 3 before I provide a solution for six sixes equaling 7. Etc.

How high can we get 6 sixes to go?

Thank you Brent for your great submission.

We will keep this one unsolved until the great computer tells us there is no greater answer, yet 42 is the answer to everything.

Warning: Use of undefined constant bfa_comments - assumed 'bfa_comments' (this will throw an Error in a future version of PHP) in/home/customer/www/riddledude.com/public_html/wp-content/themes/atahualpa/comments.phpon line132sin( acos( 6 ) ) + 66 + 66/6 = 161

6!/6 + (6 * (6+6/6)) = 162

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 – 66/6 = 163

acos(sin(6)) + acos(sin(6/.6)) + (6-6)*6 = 164

sin( acos( 6 ) ) + cos( asin( 6 ) ) – ( 6 + 6 + 6 ) / 6 = 165

(6/.6 + 6) * 6/.6 + 6 = 166

sin( acos( 6 ) ) + cos( asin( 6 ) ) – 66/66 = 167

sin(acos(6)) + sin(acos(6)) +66-66 = 168

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 66/66 = 169

66/.6 + 6 * 6/.6 = 170

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/6 + 6/6 = 171

Hey Brent,

Isn’t sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/6 + 6/6 = 171 actually 170?

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 – (6+6)/6 = 172

Oh boy, I guess I need to start checking my work.

How about:

sin( acos( 6 ) ) + cos( asin( 6 ) ) + (6 + 6 + 6)/6 = 171

And now,

sin( acos( 6 ) ) + cos( asin( 6 ) ) + (6 * 6 – 6)/6 = 173

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 + (6-6)*6 = 174

(6! – 66) / 6 + 66 = 175

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 + (6+6)/6 = 176

666/6 + 66 = 177

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/.6 + (6-6) = 178

( (6 + 6 + 6) x 6 – .6 ) / .6 = 179

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6+6 + (6-6) = 180

( (6 + 6 + 6) x 6 + .6 ) / .6 = 181

sin( acos( 6 ) ) + 66/.6 – 6 -6 = 182

(6! / .6 – 66) / 6 – 6 = 183

sin( acos( 6 ) ) + 66/.6 – 6/.6 = 184

6!/6 + 66 – 6/6 = 185

6•((6•(6-(6÷6))+(6÷6))= 186

Oh, wait. I used 7 sixes.

Thanks for joining Jasmine! I’m sure you can find a solution with 6 6’s?

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6+6 + sqrt(6) * sqrt(6) = 186

(6! + (6 x 66) + 6) / 6 = 187

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/.6 +6/.6 = 188

sin( acos( 6 ) ) + cos( asin( 6 ) ) + ( 6 + 6.6 ) / .6 = 189

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6+6 + (6/.6) = 190

6! x .6 – (6! + 6! + 6) / 6 = 191

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 + 6 + 6 + 6 = 192

6! x .6 – (6! + 6! – 6) / 6 = 193

asin(cos(6)) + 66/.6 +6-6 = 194

asin(cos(6)) + 66/.6 + 6/6 = 195

6x6x6 – (6 + 6)/.6 = 196

asin(cos(6)) + 6!/6 – 6 – 6/6 = 197

asin(cos(6)) + 6!/6 – 6 – 6+6 = 198

asin(cos(6)) + 6!/6 – 6 + 6/6 = 199

(6/.6) * (6/.6 + 6/.6) = 200 Boom

(6 + ( (6! x 6) / .6) / 6) /6 = 201

(6×66)x6) – 666) – 66 – 66 – 66 – 66 – 66 – 66 – 66 – (6×6) /6 = 202

Hi Jeff, Great solution, but I think you used more than 6 sixes….

asin(cos(6)) + 6!/6 – (6+6)/6 = 202

( ( 6! / .6 ) + 6 + 6 + 6 ) / 6 = 203

asin(cos(6)) + 6!/6 – (6-6)/6 = 204