This is an ongoing riddle to see how far we can get as a group.
Similar to “Just One” we try and figure out how to use six 6’s to equal 1 (O.K. that’s been solved) then 2, then 3, then 4, etc. to see how far we can get.
We are to come up with answers in sequence (2, 3, 4, 5, etc.) and the same person is not allowed to produce two answers in a row. So if I come up with the solution for 2. I must wait until someone else posts a solution for six 6’s equaling 3 before I provide a solution for six sixes equaling 7. Etc.
How high can we get 6 sixes to go?
Thank you Brent for your great submission.
We will keep this one unsolved until the great computer tells us there is no greater answer, yet 42 is the answer to everything.
Warning: Use of undefined constant bfa_comments - assumed 'bfa_comments' (this will throw an Error in a future version of PHP) in /home/customer/www/riddledude.com/public_html/wp-content/themes/atahualpa/comments.php on line 132
sin( acos( 6 ) ) + 66 + 66/6 = 161
6!/6 + (6 * (6+6/6)) = 162
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 – 66/6 = 163
acos(sin(6)) + acos(sin(6/.6)) + (6-6)*6 = 164
sin( acos( 6 ) ) + cos( asin( 6 ) ) – ( 6 + 6 + 6 ) / 6 = 165
(6/.6 + 6) * 6/.6 + 6 = 166
sin( acos( 6 ) ) + cos( asin( 6 ) ) – 66/66 = 167
sin(acos(6)) + sin(acos(6)) +66-66 = 168
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 66/66 = 169
66/.6 + 6 * 6/.6 = 170
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/6 + 6/6 = 171
Hey Brent,
Isn’t sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/6 + 6/6 = 171 actually 170?
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 – (6+6)/6 = 172
Oh boy, I guess I need to start checking my work.
How about:
sin( acos( 6 ) ) + cos( asin( 6 ) ) + (6 + 6 + 6)/6 = 171
And now,
sin( acos( 6 ) ) + cos( asin( 6 ) ) + (6 * 6 – 6)/6 = 173
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 + (6-6)*6 = 174
(6! – 66) / 6 + 66 = 175
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 + (6+6)/6 = 176
666/6 + 66 = 177
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/.6 + (6-6) = 178
( (6 + 6 + 6) x 6 – .6 ) / .6 = 179
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6+6 + (6-6) = 180
( (6 + 6 + 6) x 6 + .6 ) / .6 = 181
sin( acos( 6 ) ) + 66/.6 – 6 -6 = 182
(6! / .6 – 66) / 6 – 6 = 183
sin( acos( 6 ) ) + 66/.6 – 6/.6 = 184
6!/6 + 66 – 6/6 = 185
6•((6•(6-(6÷6))+(6÷6))= 186
Oh, wait. I used 7 sixes.
Thanks for joining Jasmine! I’m sure you can find a solution with 6 6’s?
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6+6 + sqrt(6) * sqrt(6) = 186
(6! + (6 x 66) + 6) / 6 = 187
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/.6 +6/.6 = 188
sin( acos( 6 ) ) + cos( asin( 6 ) ) + ( 6 + 6.6 ) / .6 = 189
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6+6 + (6/.6) = 190
6! x .6 – (6! + 6! + 6) / 6 = 191
sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 + 6 + 6 + 6 = 192
6! x .6 – (6! + 6! – 6) / 6 = 193
asin(cos(6)) + 66/.6 +6-6 = 194
asin(cos(6)) + 66/.6 + 6/6 = 195
6x6x6 – (6 + 6)/.6 = 196
asin(cos(6)) + 6!/6 – 6 – 6/6 = 197
asin(cos(6)) + 6!/6 – 6 – 6+6 = 198
asin(cos(6)) + 6!/6 – 6 + 6/6 = 199
(6/.6) * (6/.6 + 6/.6) = 200 Boom
(6 + ( (6! x 6) / .6) / 6) /6 = 201
(6×66)x6) – 666) – 66 – 66 – 66 – 66 – 66 – 66 – 66 – (6×6) /6 = 202
Hi Jeff, Great solution, but I think you used more than 6 sixes….
asin(cos(6)) + 6!/6 – (6+6)/6 = 202
( ( 6! / .6 ) + 6 + 6 + 6 ) / 6 = 203
asin(cos(6)) + 6!/6 – (6-6)/6 = 204