# Many More Sixes This is an ongoing riddle to see how far we can get as a group.

Similar to “Just One” we try and figure out how to use six 6’s to equal 1 (O.K. that’s been solved) then 2, then 3, then 4, etc. to see how far we can get.
We are to come up with answers in sequence (2, 3, 4, 5, etc.) and the same person is not allowed to produce two answers in a row. So if I come up with the solution for 2. I must wait until someone else posts a solution for six 6’s equaling 3 before I provide a solution for six sixes equaling 7. Etc.

How high can we get 6 sixes to go?

Thank you Brent for your great submission.
We will keep this one unsolved until the great computer tells us there is no greater answer, yet 42 is the answer to everything.

### 283 guesses to Many More Sixes

Warning: Use of undefined constant bfa_comments - assumed 'bfa_comments' (this will throw an Error in a future version of PHP) in /home/customer/www/riddledude.com/public_html/wp-content/themes/atahualpa/comments.php on line 132
• brent

sin( acos( 6 ) ) + 66 + 66/6 = 161

• Frank

6!/6 + (6 * (6+6/6)) = 162

• brent

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 – 66/6 = 163

• Frank

acos(sin(6)) + acos(sin(6/.6)) + (6-6)*6 = 164

• brent

sin( acos( 6 ) ) + cos( asin( 6 ) ) – ( 6 + 6 + 6 ) / 6 = 165

• Frank

(6/.6 + 6) * 6/.6 + 6 = 166

• brent

sin( acos( 6 ) ) + cos( asin( 6 ) ) – 66/66 = 167

• Frank

sin(acos(6)) + sin(acos(6)) +66-66 = 168

• brent

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 66/66 = 169

• Frank

66/.6 + 6 * 6/.6 = 170

• brent

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/6 + 6/6 = 171

• Frank

Hey Brent,

Isn’t sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/6 + 6/6 = 171 actually 170?

• Frank

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 – (6+6)/6 = 172

• brent

Oh boy, I guess I need to start checking my work.

sin( acos( 6 ) ) + cos( asin( 6 ) ) + (6 + 6 + 6)/6 = 171

• brent

And now,
sin( acos( 6 ) ) + cos( asin( 6 ) ) + (6 * 6 – 6)/6 = 173

• Frank

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 + (6-6)*6 = 174

• brent

(6! – 66) / 6 + 66 = 175

• Frank

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 + (6+6)/6 = 176

• brent

666/6 + 66 = 177

• Frank

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/.6 + (6-6) = 178

• brent

( (6 + 6 + 6) x 6 – .6 ) / .6 = 179

• Frank

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6+6 + (6-6) = 180

• brent

( (6 + 6 + 6) x 6 + .6 ) / .6 = 181

• Frank

sin( acos( 6 ) ) + 66/.6 – 6 -6 = 182

• brent

(6! / .6 – 66) / 6 – 6 = 183

• Frank

sin( acos( 6 ) ) + 66/.6 – 6/.6 = 184

• brent

6!/6 + 66 – 6/6 = 185

• Jasmine

6•((6•(6-(6÷6))+(6÷6))= 186

• Jasmine

Oh, wait. I used 7 sixes.

• brent

Thanks for joining Jasmine! I’m sure you can find a solution with 6 6’s?

• Frank

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6+6 + sqrt(6) * sqrt(6) = 186

• brent

(6! + (6 x 66) + 6) / 6 = 187

• Frank

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6/.6 +6/.6 = 188

• brent

sin( acos( 6 ) ) + cos( asin( 6 ) ) + ( 6 + 6.6 ) / .6 = 189

• Frank

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6+6 + (6/.6) = 190

• brent

6! x .6 – (6! + 6! + 6) / 6 = 191

• Frank

sin( acos( 6 ) ) + cos( asin( 6 ) ) + 6 + 6 + 6 + 6 = 192

• brent

6! x .6 – (6! + 6! – 6) / 6 = 193

• Frank

asin(cos(6)) + 66/.6 +6-6 = 194

• brent

asin(cos(6)) + 66/.6 + 6/6 = 195

• Frank

6x6x6 – (6 + 6)/.6 = 196

• brent

asin(cos(6)) + 6!/6 – 6 – 6/6 = 197

• Frank

asin(cos(6)) + 6!/6 – 6 – 6+6 = 198

• brent

asin(cos(6)) + 6!/6 – 6 + 6/6 = 199

• Frank

(6/.6) * (6/.6 + 6/.6) = 200 Boom

• brent

(6 + ( (6! x 6) / .6) / 6) /6 = 201

• jeff campbell

(6×66)x6) – 666) – 66 – 66 – 66 – 66 – 66 – 66 – 66 – (6×6) /6 = 202

• Frank

Hi Jeff, Great solution, but I think you used more than 6 sixes….

asin(cos(6)) + 6!/6 – (6+6)/6 = 202

• brent

( ( 6! / .6 ) + 6 + 6 + 6 ) / 6 = 203

• Frank

asin(cos(6)) + 6!/6 – (6-6)/6 = 204